

2016 中国显示产业研讨会 2016 China Display Conference

(ihs)

2016年9月8-9日 | 上海龙之梦大酒店 September 8-9, 2016 | The Longemont Shanghai Hotel 中英同声传译 English-Chinese Simultaneous Interpretation

Virtual Reality / Augmented Reality Devices and PC Cooperation

"See" your future by AR / VR

Jeff Lin 林信良 Principal Analyst 首席分析師

Content

Part 1 What's AR / VR

Part 2 VR Product Development Trend Update

Part 3 AR Product Development Trend Update

Part 4

AR/VR's Potential Market

Part 1: What's AR / VR

What's AR / VR

Image credit: credencys

Image credit: Samsung

- > With AR, users continue to be in touch with the real world while interacting with virtual objects around them.
- > With VR, the user is isolated from the real world while immersed in a world that is completely fabricated.

Augmented Reality (AR)

Augmented reality combines digital information with actual surroundings.

It enhances our visual and hearing by adding graphics and sound onto actual surroundings in real time.

Example: Google Glass, Pokémon Go Mobile Application

Mixed Reality (MR)

Mixed reality merges the with the real world to create a connected environment. AR objects are more static, whereas MR is able to create spatial experience. For instance when you lean forward, the virtual object would appear closer.

Example: Microsoft HoloLens

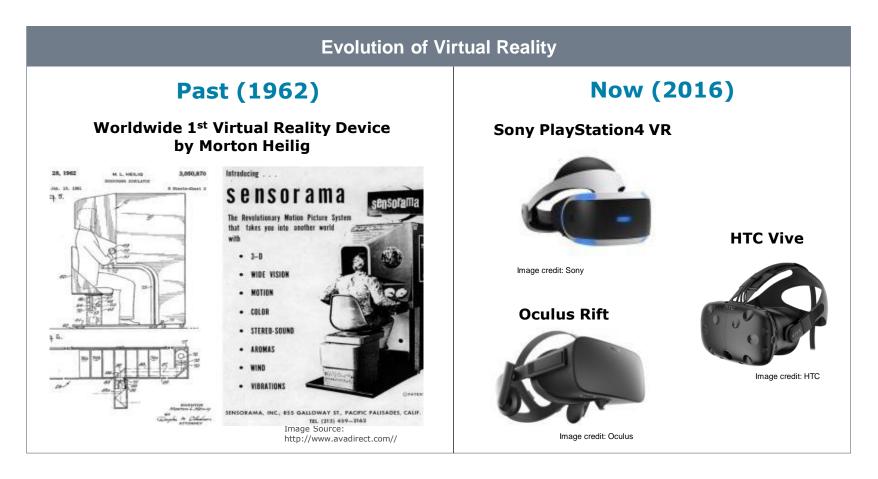
Virtual Reality (VR)

Virtual reality is a technology that creates the entire environment and allows the user to interact with the artificial world. Along with sensors, 3D graphics and surround sound, the content is able to make users feel as though the fabricated object or environment is real.

Example: Oculus Rift / HTC

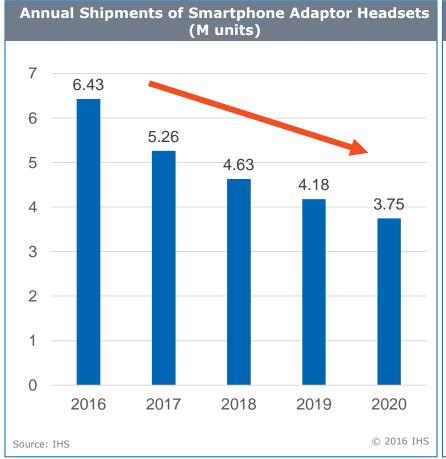
Vive

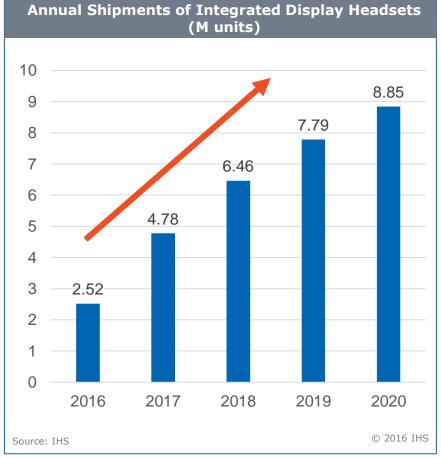
Product Categories of AR / VR



Part 2: VR Product Development Trend Update

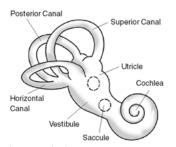
Why Virtual Reality's Commercial Impact is Coming



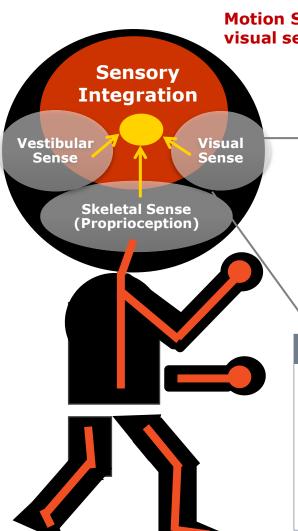

 Following technological advancements allow virtual reality to be commercialized GPU, OLED display, Motion Sensor, Battery, Game Engine

Worldwide Virtual Reality Device Shipment Forecast

Without head tracking function, VR device is just a personal 3D display device, so we remain conservative on the demand for smartphone adaptor headsets.


© 2016 IHS Markit. All Rights Reserved. [Note] 3D: 3 Dimensions

Sensory Integration Introduction


- Children under 16 whose vestibular system have not attain maturity completely.
- Ears are very sensitive on audio performance (surround-sound).

Vestibular System

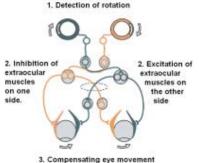
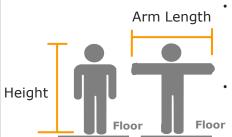

The vestibular system consists of three semicircular canals and the vestibule, and the three semicircular canals are responsible for detecting rotational movements while the otolithic organs in the vestibule detect linear acceleration (movement in a straight line).

Image and Data Source: http://www.web-books.com/eLibrary/Medicine/Physiology/Ear/Ear .htm

Motion Sickness – Conflicting inputs from visual sense, vestibular sense, and proprioception.

Vestibulo-ocular reflex (VOR)

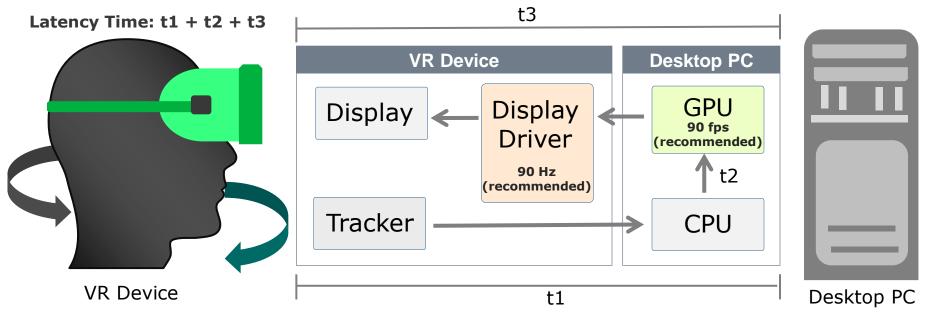


[Vestibulo-ocular reflex]
A rotation of the head is
detected, which triggers an
inhibitory signal to the
extraocular muscles on one
side and an excitatory signal
to the muscles on the other
side. The result is a
compensatory movement of
the eyes

Image and Data source: Wikipedia

How to have a perfect match between head track and eyes movement is very important for VR device.

Immersion - 3 Dimensional Sense of Space



- Not only ears (vestibular sense), 3 dimensional sense of space is also constructed by proprioception.
- Immersion performance of VR device depends on

floors

Why VR Device Adopts OLED Display

Why VR device adopts OLED display

- Reason 1 : No blue light issue
- Reason 2 : Quick response time
- Reason 3 : No display persistence issue
- Reason 4: Wider color gamut range
- Reason 5 : Slim and light

OLED display's potential issue

- Issue 1: Limit on PPI upgrade
- Issue 2 : Limit on OLED supply capacity
- Issue 3 : Limit on qualified OLED driver vendor

[Note] PPI: Pixels Per Inch; GPU: Graphics Processing Unit;

CPU : Central Processing Unit ; OLED : Organic Light-Emitting Diode

Viewing Quality Loss – Barrel Distortion

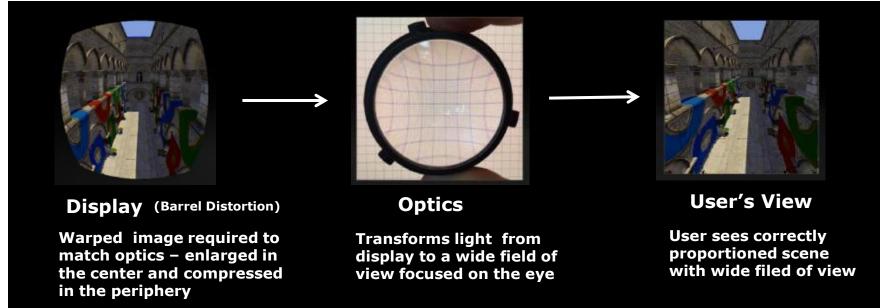
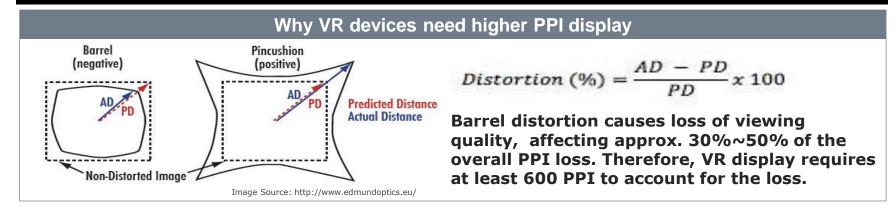
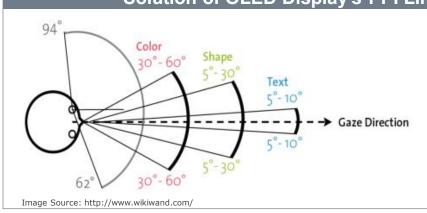



Image & Data source: ihttp://www.tomshardware.com/news/nvidia-gameworks-vr,29197.html

OLED Display's PPI Limit Issue

VR OLED Display List						
Panel Spec	VR OLED Display					
Size	3.58 inch	3.61 inch	3.64 inch	3.72 inch		
Resolution	1920 (RG/BG) x 2160	1080 (RG/BG) x 1200	1440 (RG/BG) x 1280	1440 (RG/BG) x 1600		
PPI	806 ppi	447 ppi	530 ppi	575 ppi		
Frame Rate	90 Hz	90 Hz	90 Hz	90 Hz		
Response Time	< 1ms	< 1 ms	< 2 ms	< 1 ms		
MP schedule	TBD	MP Ready	TBD	TBD		
Source: IHS © 2016 IHS						

Display Requirements


Frame Rate: 90 Hz above

• Resolution : 1080P (Per Eye)

Low Persistence: < 3ms

FOV: 80 degree above

Solution of OLED Display's PPI Limit Issue : Eye Tracking Technology

- The human eye's vision field for eyefocus is 5 to 10 degree.
- With eye tracking technology and image upscaling technology, VR headset designers can overcome OLED display's PPI limitation issue. Also, they don't need to use expensive high PPI OLED display.

[Note] PPI: Pixels Per Inch; OLED: Organic Light-Emitting Diode FOV: Field of View; MP: Mass Production; VR: Virtual Reality

PC Development Trend: Backpack PC vs. Desktop PC

MSI Backpack VR PC Specification

 CPU : Intel Skylake Core i7 Processor

• GPU: Nvidia GTX 980

Weight: around5kq

 Battery Life time : around 2 hours Not only heavy (5 kg) and short battery life time (2 hours) issues, Backpack PC also have thermal issue which is caused by GPU.

However, NVidia doesn't have any improvement proposal for VR backpack because NVidia thinks backpack VR PC is an infeasible product concept, so NVidia prefers to invest more GPU development resources on automotive application.

Without NVidia's support, VR GPU will not applied for portable device in short term.

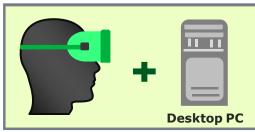


Image credit:: MSI

Nvida Geforce GTX VR-Ready - Desktop Requirements

• **GPU**: NVIDIA GeForce GTX 970 or greater

• **CPU**: Intel Core i5- 4590 equivalent or greater

Memory / RAM : 8GB+ RAMVideo Output : 1x HDMI 1.3

• **Ports**: 3x USB 3.0

• **OS**: Windows 7 SP1 (64bit) or higher

• **Driver**: GeForce 359 or newer

+ Notebook

Nvida Geforce GTX VR-Ready - Notebook Requirements

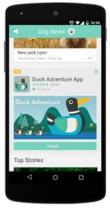
GPU: NVIDIA GeForce GTX 980*

• **CPU**: Intel Core i7- 6700HQ or greater

Memory / RAM : 8GB+ RAM

• Video Output : 1x HDMI 1.3

• **Ports**: 3x USB 3.0


• **OS**: Windows 7 SP1 (64bit) or higher

• **Driver** : GeForce 359 or newer

Google VR Strategy Analysis: Cardboard vs. Daydream

Forward View

Forward / Up / Down / Left / Right View

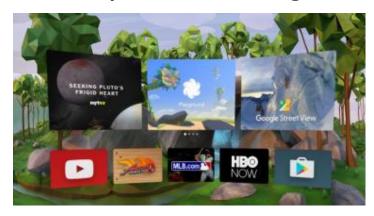
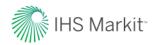


Image credit:: Google


Cardboard vs. Daydream						
Platform	Cardboard	Daydream				
Туре	Entry Level of Smartphone VR Platform	Advanced Level of Smartphone VR Platform				
Smarphone Requirment Recommend	For All Smartphones	For High Performance Smartphones (ex: Smartphone : Nexus 6P / Controller : Nexus 5X)				
VR Experience Time	Short VR Viewing Experience	Longer VR Viewing Experience by Abundant VR contents				
Headset Accessory Requirement	Low Cost (ex: Cardboard)	Higher Quality of Headset Accessory				

Google Strategy: Increase advertising amount by VR application

Google Action:
Offer more free or
attractive VR contents
by 360 degree camera

Potential Issue:
Motion sickness issue

Source: IHS © 2016 IHS

Part 3: AR Product Development Trend Update

Head-Mounted AR Device Overview

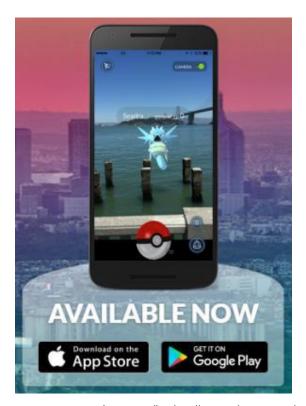
Microsoft HoloLens

Image credit: Microsoft

Price of Development Edition: \$3,000

Microsoft HoloLens embraces virtual reality and augmented reality to create a new reality: mixed reality

Hardware List of Microsoft HoloLens				
OS and Apps	Windows 10			
OS and Apps	Windows Store			
Processors	Intel 32 bit architecture			
1100033013	Custom-built Microsoft Holographic Processing Unit (HPU 1.0)			
Memory	64GB Flash			
riemory	2GB RAM (2GB CPU and 1GB HPU)			
	See-through holographic lenses (waveguides)			
	2 HD 16:9 light engines			
Optics	Automatic pupillary distance calibration			
	Holographic Resolution: 2.3M total light points			
	Holographic Density: > 2.5K radians (light points per radian)			
	1 IMU			
	4 environment understanding cameras			
	1 depth camera			
Sensors	1 2MP photo / HD video camera			
	Mixed reality capture			
	4 microphones			
	1 ambient light sensor			
	Spatial sound			
	Gaze tracking			
Human understanding	Gesture input			
	Voice support			
	Built-in speakers			
	Audio 3.5 mm jack			
	Volume up/down			
Input / Output /	Brightness up/down			
Connectivity	Power button			
	Battery status LEDs			
	Wi-Fi 802.11ac			
	Micro-USB 2.0 cable			
	Battery life (2-3 hours of active use / Up to 2 weeks of standby time			
Power	Full functional when charging			
1 3 1 3 1	Passively cooled (no fans)			
Weight	, ,			
vveigiit	579 g			
Memory	64GB Flash			
	2GB RAM (2GB CPU and 1GB HPU)			


Data Source : Microsoft

Augment Reality (AR): AR Apps on Portable Devices

Pokémon GO: AR App + Camera + GPS + Map + Mobile Payment

Potential issue on outdoor AR Apps: Pokémon GO could not capture outdoor objects by camera easily because of Infrared (IR) interference.

Pokémon GO is a free-to-play location-based augment reality mobile game released in July 2016 by Niantic. It allows players to capture, battle, and train virtual creatures between real world and the virtual world of Pokémon for iPhone and Android devices.

Introduction of Pokémon GO

Developer: Niantic

Game Engine: Unity

Platforms: iOS, Android

Release date: July 6th, 2016

Play Mode: Single-Play, Multiplayer

Image credit: http://www.pokemon.com/

AR: Display Performance Improvement

AR Performance Improvement: Display

Image credit: https://www.youtube.com/watch?v=R6c1STmvNJc

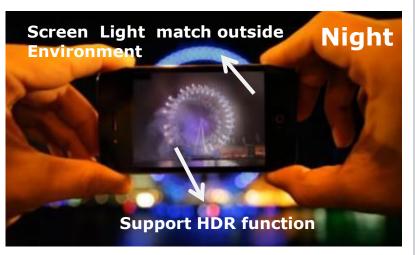


Image credit: https://www.youtube.com/watch?v=R6c1STmvNJc

When users start to play AR Apps out of door, display quality will become first issue. Therefore, we foresee there're four potential issues on display design.

Issue 1: Could display be sun-light readable?

Issue 2: Could display have true color performance?

Issue 3: Could display support HDR function if using AR Apps late evening?

Issue 4: Could display light switch to outside light quickly when turning on camera?

AR: Camera Performance Improvement

AR Performance Improvement: Camera

Image credit: https://www.youtube.com/watch?v=R6c1STmvNJc

If users want to have great experience of playing AR Apps, camera design will be 2nd issue when seeing virtual objects in real world. Therefore, we foresee two potential issues on camera design.

- Issue 1: How to have better view quality of depth and shallow of field at same time?
- Issue 2: How to assist AR software developers to detect the distance between camera and specified location of virtual object?

AR: Feedback Engine Performance Improvement

AR Performance Improvement : Feedback Engine

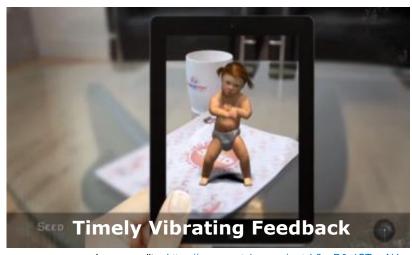


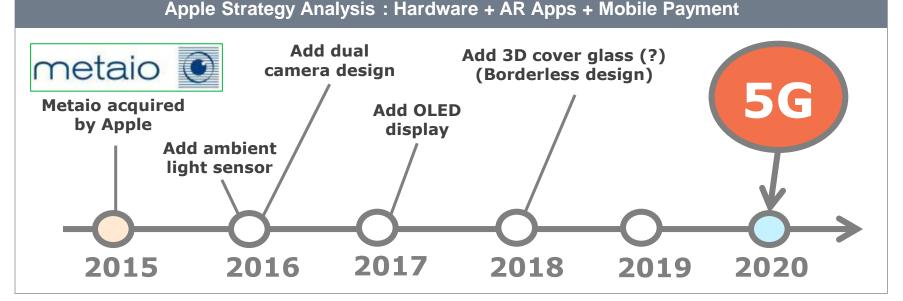
Image credit: https://www.youtube.com/watch?v=R6c1STmvNJc

When viewing quality of playing AR Apps improved (display & camera), feedback engine design will be the next issue. Therefore, we foresee three potential issues on feedback engine design.

Issue 1: Will it be easy to pop out the info you want while peeking at the one you see?

Issue 2: Will it have timely vibrating feedback design when playing AR Apps?

AR: New Business Model (AR Apps + Mobile Payment)


Preview by AR Apps

Mobile Payment

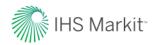
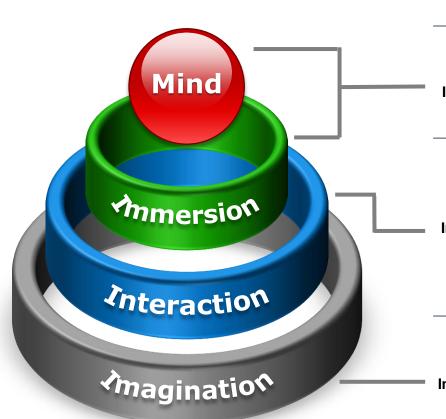


Image credit : IKEA

(a.m. Amalusia Hamburana AD Amara Mahila Darma


[Note] AR: Augment Reality; Apps: Application Software; 5G: 5th generation mobile networks

Part 4: AR/VR's Potential Market

AR / VR's Potential Market

VR / AR's Potential Market					
Level	Technology	Device	Potential Market		
Mind Immersion	VR technology	Integrated Display Headsets	Medical / Education		
	AR technology	Optical fiber by Light Field Image technology	Education / Office workplace / Television		
Interaction	VR technology	Integrated Display Headsets	Education / Sports and entertainment / Television		
	AR technology	Wearable Device (ex: Microsoft Holo Lens)	Gaming / Education / Navigation / Translation / Office workplace		
Imagination	VR technology	Smartphone Adaptor Headsets	Television		
	AR technology	Smartphone / Tablet	Gaming / Education / Advertisement / Navigation / Translation		

Source: IHS © 2016 IHS

Using VR from User Role: Medical (Mind Rehabilitation)

Core Value of VR Application: Help end-user to see what they want to see. For example: Physical therapy and rehabilitation combined with VR (mind rehabilitation)

VR: Mind Rehabilitation Image credit: Nike **See** your future Image credit: Oculus

Using VR from Outsider Role: Experienced Learning

Distance Learning: Joining and learning skills by VR devices, even though you're not there

Participatory Entertainment: Joining TV show by VR devices, even though you're at home

Distance Learning

Haircut Learning out of School / Hair Salon

Image credit: www.michaelanthonysalondc.com

Surgery Learning out of Emergency Room

Seeing it like you're be there

Image credit: Oculus

Participatory Entertainment

Experienced Cooking While Watching TV

Image credit: www.foodgal.com

Experienced Traveling While Watching TV

Image credit: www.tourism.australia.com

VR Application on Education Market (Language Lab)

Return on the investment of VR hardware and software will be potential issues. VR application on education market (ex: Language Lab) will be a feasible solution.

Traditional Language Lab (w/o immersion)

The best English learning way is to live in the US or the UK, but the cost it too high for students.

Therefore, students only can learn English in language lab (ex: Classroom cubicles)

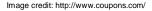


Image credit : http://www.calstatela.edu/

English Learning by VR (with immersion)

Shopping

Hotel Check-in / Check -out

Image credit: http://www.hotelroomsearch.net/

Seeing it like you're be there

If VR device with sound receiver?

VR with Speech Recognition

Image credit: Oculus

Conclusion

- Motion sickness is caused by conflicting inputs from visual sense, vestibular sense, and proprioception.
- Children under 16 whose vestibular system have not attain maturity completely, so AR will be better option for children's education market.
- Without head tracking function, VR device is just a personal 3D display device, so we remain conservative on the demand for smartphone adaptor headsets.
- Controllers will replace keyboard and mouse while using VR devices, and track design will influence VR software development.
- Future VR hardware development will focus on display driver, audio receiver (ex: de-noise function), audio quality improvement component, and motion sensor (ex: gloves with haptic feedback function)
- Future AR hardware development will focus on display, camera, and haptic device.
- Education and medical market will be potential market for VR device because
 VR device can help end-users to see what they want to see.

Jeff.Lin@ihsmarkit.com